10.13.2016

octave_functions_legendre.m

octave octave_functions_legendre

Function: octave_functions_legendre ( n )

    P00(x)=1
    P10(x)=x
    P11(x)=(1-x^2)^1/2
    P20(x)=2/3x^2-1/2
    P21(x)=3x(1-x^2)^1/2
    P22(x)=3(1-x^2)
    P30(x)=5/2x^3-3/2x
    P31(x)=(3/2)(5x^2-1)(1-x^2)^1/2
    P32(x)=15x(1-x^2) 
    P33(x)=15(1-x^2)3/2
    

Function: legendre ( n, x )

    Compute the Legendre function of degree n and order m = 0 … n. 
    The value n must be a real non-negative integer. 
    x is a vector with real-valued elements in the range [-1, 1].
    
See Also ...

octave octave_functions_legendre.m

octave octave_functions_legendre