Function: octave_functions_legendre ( n )
P00(x)=1 P10(x)=x P11(x)=(1-x^2)^1/2 P20(x)=2/3x^2-1/2 P21(x)=3x(1-x^2)^1/2 P22(x)=3(1-x^2) P30(x)=5/2x^3-3/2x P31(x)=(3/2)(5x^2-1)(1-x^2)^1/2 P32(x)=15x(1-x^2) P33(x)=15(1-x^2)3/2
Function: legendre ( n, x )
Compute the Legendre function of degree n and order m = 0 … n. The value n must be a real non-negative integer. x is a vector with real-valued elements in the range [-1, 1].See Also ...
- MAXIMA :: LEGENDREP ... Legendre polynomials