10.14.2016

Spherical harmonics ReY

octave octave_functions_SphericalHarmonic_ReY

Function: octave_functions_SphericalHarmonic_ReY ( l, m )

function out = octave_functions_SphericalHarmonic_ReY( l, m )

 seg=64;

 theta=linspace(0,pi,seg);
 phi=linspace(0,2*pi,seg);

 Theta=theta'*ones(1,seg);
 Phi=ones(seg,1)*phi;

 x=sin(Theta).*cos(Phi);
 y=sin(Theta).*sin(Phi);
 z=cos(Theta);

 L=legendre(l,cos(theta));
 am=abs(m);
 LL=L(abs(m)+1,:);
 c=(-1)^((m+am)/2)*sqrt((2*l+1)/(4*pi)*factorial(l-am)/factorial(l+am))*LL'*exp(1i*m*phi);

 cc=real(c);
 r=abs(cc);

 plot3(r.*x,r.*y,r.*z);

 out = l

endfunction

Function: legendre ( n, x )

    Compute the Legendre function of degree n and order m = 0 … n. 
    The value n must be a real non-negative integer. 
    x is a vector with real-valued elements in the range [-1, 1].
    

octave octave_functions_SphericalHarmonic_ReY.m

octave octave_functions_SphericalHarmonic_ReY